26.302

Does Semantic Activation Affect Human Object Detection in Natural Scenes? Colin S. Flowers, Rachel M. Skocypec, & Mary A. Peterson

Background

Dot-probe localization task¹ for natural images (CoCo set ²)

Object category does not predict on/off response.
Context-based guessing disabled.
Unlike CNN and AFC choices,
indexes precise location information.

Goal

Investigate relationship of processing 'what' and 'where'. Can basic-level word prime improve on/off localization?

Exp. 1

Exp. 2

Compare on/off & categorization accuracy (8 AFC).

Methods

384 images 8 categories

Apple Bird Person Zebra

Bowl Car Chair Fork

(48 images; 24 with dots within 2°, 24 with dots 2.01° - 5.16°)

Does basic-level prime before image affect on/off task?

Each image shown 1x: probe dot 'ON' or 'OFF' object.

Across subjects each image seen equally often with on/off version.

Analyses are within pictures.

Criterion and d' calculated across participants.

Exp. 1: Localization followed by Categorization

Exp. 2: Does successful categorization increase d'? 300-ms unmasked word & 100-ms ISI before scene

Neutral: XXXXXX → Bird
 Matching: bird → Bird
 Mismatching: fork → Bird (always different superordinate category)
 Expect better categorization with matching primes.

Matching prime → more 'ON' responses.

Mismatching prime → more 'OFF' responses.

Successful categorization does not improve localization.

Summary

Localization task indexes precise location information.

Important component of object detection.

Correlated with categorization.

Not caused by categorization.

Future Directions

- Add 8 AFC categorization test to Exp. 2 method.
 Test how much prime improved categorization accuracy.
- Have flashing probe dot appear before scene.
 Assume improve localization, does it improve categorization accuracy?
- Investigate specific image characteristics.

 Central/peripheral, spatial frequencies, etc.

References

Flowers, C., & Peterson, M. (2018). Human Object Detection in Natural Scenes: Evidence From a New Dot Probe Task. Journal of Vision, 18, 393-393.
 Lin, T. Y., et al., (2014). Microsoft coco: Common objects in context. In European Conference on Computer Vision, pp. 740-755.
 Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 40, 49

ONR N00014-14-1-067

Contact: Colin S. Flowers cflowers@email.arizona.edu

